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A new Monte-Carlo method is presented for the calculation of the ground-state 
wavefunction and energy value of the many-body Schrodinger equation. Several refine- 
ments to the iterative scheme, including the use of variational wavefunctions to improve 
the energy estimate and a variance reducing technique, are also discussed. The method 
allows for a straightforward treatment of repulsive potentials. It is applied to several 
problems including the three-nucleon problem with simple two-body forces. 

1. INTRODUCTION 

In a recent paper [l] we reported on a new numerical method for obtaining 
solutions to the Schriidinger equation, based on the consideration of the operator 
exp(-+IH), where H is the Hamiltonian for the system and /3 is a real parameter. 
By obtaining an approximate closed form for the coordinate space representation 
of this operator, we were able to reduce the problem to that of an integral eigenvalue 
equation, which we then solved by numerical quadratures. One of the salient 
features of the method is the very easy extension to systems with many spatial 
variables, but the numerical solution of the resulting multidimensional integral 
equations by quadratures is not feasible even with the present generation of 
modern digital computers. On the other hand, the evaluation of multidimensional 
integrals can be quite conveniently handled by Monte Carlo methods, and in 
this paper we present such a method designed to provide estimates for the ground- 
state energy and the corresponding wavefunction of a many-particle system. 

Monte-Carlo methods have in fact been used extensively in the calculation 
of the ground-state energy and wavefunction for the Schrodinger equation [2-l 1, 
16, 171. Metropolis and Ulam [2] replaced the original differential equation by a 
difference equation whose solution is obtained by a random walk on the lattice 
defined by the difference scheme. Donsker and Kac [3] and Fortet [4] used a 

* Supported by the Australian Research Grants Committee. 
+ Present Address: U.K.A.E.A. Research Group, Culham Laboratory, Abingdon, Berkshire, 

U.K. 

134 



MONTE CARLO METHOD 135 

method based on the Wiener process and estimated the value of a Wiener or 
path integral [5, 61. The value obtained can then be related to the value of the 
ground-state wavefunction at the point corresponding to the start of the path. 
A similar procedure is followed by Lawande, Jensen, and Sahlin [7], who have 
used the Monte-Carlo method to project out the ground-state contribution to the 
statistical density matrix and hence find a distribution approximating the square 
of the ground-state wavefunction. A different approach has been taken by 
Kalos [8,9], who has written the Schrodinger equation as an integral equation 
whose eigenvalue is related to the strength of the potential. He then used a Monte- 
Carlo procedure to iterate the kernel of this integral equation to obtain a sequence 
of points which are distributed according to a density function equal to the ground- 
state wavefunction. Kostin and Steiglitz [lo] related the solution of the Schrodinger 
equation to that of a Boltzmann transport equation and estimated the solution 
of this equation stochastically. 

In this paper, we present a new Monte-Carlo method for the calculation of 
the ground-state wavefunction and energy value of the Schrodinger equation, 
based on the iteration scheme proposed in Ref. [l]. The relation between this 
method and the evaluation of path integrals was discussed in Ref. [I]. The result 
is a set of points distributed according to the ground-state wavefunction weighted 
by a function which can be chosen to minimize the variance associated with the 
scheme. It is shown how the approximate wavefunction obtained by this method 
can be used to find estimates of the corresponding energy value. The method 
is applied to several problems which have been chosen to enable us to compare 
the results with those obtained by other techniques. 

2. THE MONTE-CARLO METHOD 

The formal expressions derived in our earlier work [1] carry over in a quite 
straightforward manner for the solution of the Schriidinger equation with n 
particles. In this case we look for the lowest eigenvalue and corresponding eigen- 
function of the operator, H = --CL1 (a2/8xj2) + V(x, , x2 ,..., xn), where for 
convenience we have taken units such that h2/2m = 1. For simplicity we have also 
assumed the system to consist of like particles; there is no essential complication 
if particles of different mass are also included. 

Taking H,, = -Cy=, (a2/ax,2), it has been shown quite generally that the 
operator e-BH can be approximated for small /3 as 

e-@H w e-tBVe-BHoe-&3V 3 (2.1) 

with an error of order p3. Moreover, if E,, and &,(X) (X = {x1 , x2 ,..., x,>) 
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represent the ground-state energy and wavefunction for the Hamiltonian H, 
then it has been shown that &lo(X) satisfies the integral equation 

e-B”$o(X) = 1 dY (X / e-OH / Y) q!+,(Y), (2.2) 

where for small p we may replace the kernel by the approximation 

[ 
(X - Y)” (X 1 e-BH / Y) m e-isv(x) (4n&n,2 exp - 4p 1 e -+a”,y, . (2.3) 

Using this expression in an iterative procedure based on Eq. (2.2) will give an 
energy E&3) and a wavefunction &,(X; /3) which have the property that 

and 

as p + 0. 

$43(X I3 - ?4m 

J%@> - 4 (2.4) 

A Monte-Carlo technique for finding the ground state for operators of this 
type has been developed by Kalos [8,9]; however, his original method [S] was 
confined to considering positive kernels only (which corresponds to attractive 
potentials), and the extension to repulsive potentials [9] complicates the sampling 
procedure. The method proposed in this section has none of these complications 
since the kernel used in Eq. (2.3) is always nonnegative (even in the presence of 
a hard core). 

To describe the procedure expressed by Eq. (2.4) more precisely, we define a 
sequence of approximations to the ground-state wavefunction, I,P’)(X; ,f3), where 

z)JN+l)(X; /3) = 1 e-*svfx) (4T&n,2 exp [ - (’ TPy)2] e-tov’y)#(N)(Y; p) dY. 

(2.5) 

Now under quite general conditions, we have that [1] 

and 

lim +N+l)(X; fi) = e+-%(~)#(N)(X; /$I) 
iv+= 

ii #tN)(X; /3) = const #,(X; /I). (2.6) 

The Monte-Carlo technique employed to perform these iterations can be 
described as follows. Let 

X’N’pq = ew’x’pN’(x; p), 
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and write Eq. (2.5) as 

X ‘N+l’(X) = j (4n~)2n,2 exp [ 
cx - y)2 - 4p 1 e-sv(Y,x'N'(y) dy (2.7) 

We now select a set of MO) 3n-dimensional points {Y, , Y, ,..., YIVco)} which are 
distributed according to an arbitrary density function x(O)(Y). Convergence will be 
improved if this approximates the function efSy(y) z+!JXY; /3), but this is not essential. 
Then we can construct a new set of points distributed according to e-sV’y’x(o)(Y) 
by replacing each point i(1 < i ,< M(O)) in our original set by mi points at the 
same position. The integer mi is chosen so that 

mi = [c.L-~“(~~J] + 1 

if the fractional part of ce- By(yJ is greater than a random number chosen from 
a uniform distribution between 0 and 1, and 

mi = [ce-Bv(yt)] 

otherwise. Here c is an arbitrary constant which determines the number of points 
in the new distribution and square brackets are used to denote the integral part 
of their contents. The value c can be adjusted in the course of the computation 
to stabilize the number of points near some predetermined number so that the 
storage space in the computer is not overloaded. Suppose that AP = CE:“’ mi 
is the number of points thus generated. These are then distributed according to 
e-By’y’x(o)(Y). We now add to each component of each of the M(1) points a different 
random number tie picked from a normal distribution with zero mean and 
variance 28, i.e., 

xi, = K* + &a ; i = I,..., fW); ol=l ,..., 3n. (24 

Then using the convolution theorem governing the composition of random 
variables [Ill, the new set of points {X, ,..., X,U,} are distributed according to 
x(‘)(X), where 

(' - '1" - 4p 
I 

e-SVCY,x’O’(y) dy 
(2.9) 

This corresponds to one iteration of the integral operator in Eq. (2.7). We can 
continue this procedure to obtain, after N steps, X(~)(X), and so if N is large 
enough, we will have a set of MN) points distributed according to x0(X) = 
easr”Y)#o(X; /I). The ground-state eigenvalue can be obtained by continuing the 
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iteration procedure past the point at which the distribution of points has converged 
to the ground state. Then Eq. (2.9) becomes 

e-BEo’4’x~tW = t4n&n,2 exp - s [ (’ - ‘)’ 4~ 1 e-avcy)xo(Y) dY 9 (2.10) 

so that each iteration reproduces x,-,(X) but with a different sample of points. 
If the integral in Eq. (2.10) extends over all space we may obtain an expression 
for the ground-state energy value by integrating the last equation with respect to X. 
We then have 

e-oE,(B) _ .i- e-6”‘x’xo(X) dX 
J-x&Q dX ’ 

(2.11) 

and so E,,(p) can be estimated by sampling the function e-By(x) over a set of points 
distributed according to x,,(X). Thus 

if we have M points in the corresponding sample. This estimate can be improved 
by taking the average of Eq. (2.12) over many iterations. If p is chosen small 
enough then E&3) = E,, and so we have an estimate for the ground-state energy 
value. 

3. THE USE OF VARIATIONAL WAVEFUNCTIONS 

Although the iterative procedure based on Eq. (2.7) converges to the ground-state 
wavefunction for all potentials, the use of Eq. (2.11) as an estimator for the 
ground-state energy value will lead to erroneous results in some instances. The 
difficulty arises from the fact that Eq. (2.11) is obtained by an integration over all 
space. Clearly, there will be some situations (e.g., potentials with hard-core 
interactions) where the basic iteration equation applies over only a restricted 
domain of the configuration space variable X, and we will be unable to use this 
expression. This problem can be overcome, and, indeed, we can obtain more 
accurate results for smooth potentials, by making use of the information obtained 
about the ground-state wavefunction by variational and other methods. 

Let us suppose that an approximate wavefunction 4(X), which is continuous 
(with continuous first and piecewise continuous second derivatives) and satisfies 
the appropriate boundary conditions, has been obtained in analytic form. Then 
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both $(X) and H&X) can be expanded in terms of the eigenfunctions, #,(X), 
of the original Schrodinger equation, 

and 

W(X) = 1 G%m). (3.2) 
‘9 

If we know the exact ground-state wavefunction, &,(X), then the energy can be 
obtained by using the orthogonality properties of the functions #s(X), i.e., 

E. = .I- #o(X) W(X) dx 
.f 40(x) 4(X) dX - 

(3.3) 

Now we can evaluate the above integrals, at least to an accuracy of order 165, 
by using a set of points distributed according to x0(X) = e*B”(X)&,(X; /3), obtained 
by using the iterative procedure based on Eq. (2.7). For small /3, &(X; j?) = 
y+,(X) + O(/3s). Thus 

E 
’ 

= .f x0(X) e-tsvcx)H+(X) dX + o(~3) 
s x0(X) e-fsvcx)$(X) dX 

(3.4) 
w X2-, e-3BY(X~){H~}(Xi) 

CE, e-QY(Xi)#(Xi) ’ 

if there are M points in the sample. 
Although Eq. (3.3) is an exact result for all functions 4(X) with the appropriate 

continuity and boundary properties, the variance associated with the Monte-Carlo 
estimate Eq. (3.4) is affected by its choice. In general the closer #(X) approximates 
the ground-state wavefunction $o(X) the smaller is the corresponding variance. 

4. AN APPLICATION 

To illustrate the method we have calculated the ground-state energy for a 
system of n equal particles in one dimension, which interact pairwise via inverse 
cube (“centrifugal potential”) and linear (“harmonic oscillator potential”) forces. 
The value of this particular example lies in the fact that it is a relatively nontrivial 
n-body problem for which an explicit analytic solution has been found [12, 131. 
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The Schrodinger equation for this problem is 

i - &ig + ; 6J2 i;j (Xi - Xi)” + g c (Xi - xa2/ $Gl ,--*, &> i<j 
= E#(x, )...) x,). (4.1) 

Following the analysis of Calogero, the solution for the ground-state wavefunction 
(in the restricted region x, 
the variables 

< x2 < ... < x,) and energy is found in terms of 

2 = fi (Xi - Xi) (4.2) 
iij 

and 

r2 = i ,x, (xi - ~~12. 
213 

It can be written as 

&(x1 ,..., x,) = Z”+* exp [- iw,Jtr2] 

and 

E, = w n2- 1 + (Lr-;j+ l)], (4.3) 

where a = i(1 + 2g)‘i2 with g > -+ to avoid the singularity at the origin 
introduced with two-body collapse [14]. As expected from the nature of the 
centrifugal forces, this wavefunction has the property of approaching zero when 
any two of the particles come together. Coupled to the one-dimensional nature 
of the problem, this property prevents particles overtaking one another, so that 
(as Calogero has observed [13]) the solution can be quite adequately described 
by considering only the restricted region of configuration space. The solution 
for the whole space can then be easily constructed with the appropriate statistics 
from the function &(x1 ,..., x,) [12]. As far as the calculation of the ground-state 
energy is concerned, however, it is sufficient to carry out the Monte-Carlo procedure 
in the restricted region. 

In choosing the function +(x1, x2 ,..., x,) to be used in calculating the energy 
in the Monte-Carlo method, it is most important that we satisfy the boundary 
condition as (xi - xi) + 0. However, it is also necessary that the function we 
choose should be as simple as possible, in order to reduce the amount of computa- 
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tion. By demanding that each point Xi = {x1 ,..., x,}u) , in the sample belong 
to the restricted region of configuration space, it is clearly only necessary to 
satisfy the above boundary condition for neighbouring particles. Thus we have 
taken 

where ri,i+l = xi+1 - xi , and 4 must satisfy the boundary conditions $(x~,~+~) + 0 
as ri,i+l --+ 0, cc. A convenient form for the function fi is 

q5(ri,i+l) = ri,i+leeyTi~i+12, 

where y is a parameter which can be chosen to reduce the variance. 
With this particular form for d(X), the function H$ needed in the expression 

Eq. (3.3) is easily found as 

+ i OJ2 i;j (xi - Xj)" 4 + g 1 (Xi - Xj)-" +. (4.6) 
i<j 

To commence the iteration process it is necessary to construct an initial distribu- 
tion of sample points. Although it is not vital, at least as far as the final result 
is concerned, for this to be a very good approximation to the function x,,(X), 
the choice will affect the amount of computation necessary for the distribution 
to converge to a given statistical uncertainty. In our calculations we have begun 
with a sample of one hundred points Xi distributed according to the formula 

xi, = K(Ci - n/2 - 1 + &) for n odd 

= K(Ci - n/2 - i + $vi,) for II even 
(4.7) 

with 1 < i < 100, 1 < 01 < n. Here K is a parameter describing the separation 
of the particles and qia is a random number picked from a normal distribution 
with zero mean and variance one. 

Now with a reasonably large value of /3 (0.05), this distribution was iterated 
in such a fashion that the sample size increased to approximately five hundred 
points. This merely involves selecting an appropriate value of c (c w 1.2 will allow 
for this to occur in approximately ten iterations without overloading the storage 
capacity). The value of c was then fixed so that the sample size stabilized at this 
number of points (c w 1.0). After collecting the results for several hundred itera- 
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tions with this value of /3 (the distribution would have converged well before 
this number of iterations), we repeated iterating with /3 reduced to 0.025. With 
only 500 points this procedure can only be repeated usefully for a certain range 
of values of p. Eventually, if the value of p is too small, the Monte-Carlo method 
becomes insensitive to the potential term, e-@‘(‘J = 1 - fiV(Xi), since on the 
average onlythe fractior$Vof the total number of points in the sample are affected 
by the potential. Any further reduction in the value of /I must be accompanied 
by a corresponding increase in the number of sample points. Thus after further 
reducing the value of /I to 0.01 we increased the sample size to 1000 points to 
improve the results. Of course this will eventually provide a limit to the accuracy 
of the calculations; however, for most cases, this will not concern us too much 
since the errors involved in the basic approximation to the Green’s function 
can easily be kept smaller than the statistical error involved with the Monte-Carlo 
method. It is interesting to note the analogous difficulty which arose with the 
application of finite-difference methods [l]; there, any reduction in /3 must be 
accompanied by an increase in the number of grid points for the accurate numerical 
evaluation of the integrals. 

TABLE I 

A Typical Set of Monte-Carlo Estimates” for the Ground-State Energy 
of a System with Nine Particles when w = 0.25 and g = 1.5. 

B M E” ED2 

0.05 500 61.15 * 0.04 60.13 i 0.08 
0.025 500 61.56 * 0.04 61.11 i 0.11 
0.01 500 61.42 + 0.03 61.12 rt 0.15 
0.01 1000 61.51 f 0.03 61.31 zt 0.10 

5 The approach towards the exact value (61.51828) is noticeable in the estimates Emc . Notice 
also, the greatly improved value for fi = 0.05 using the variational estimate against the usual 
Monte-Carlo average. As the distribution improves for smaller /l this difference becomes less 
significant. Each set of one hundred iterations with approximately 500 sample points took 
approximately 6 min to compute on a CDC 6400 computer. 

The results obtained for the case n = 9 are illustrated in Table I. Each result 
represents the mean over 100 iterations (each involving approximately M sample 
points) taken at a stage when the distribution had appeared to have converged 
for that value of ,3. We have presented here both estimates for the energy value: 
Emc calculated using Eq. (2.12) and Ev using Eq. (3.4). The estimate Eq. (2.12) 
is permissible in this case (even though we have used a restricted region of configura- 
tion space in the calculations) since the equation (2.9) is valid over the whole space. 

Of course in the discussion of any Monte-Carlo procedure some estimate of 
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ITERATION No. 

100 125 150 

ITERATION No. 

FIG. 1. Graphs showing the results of successive energy estimates plotted against iteration 
number. Both sets were taken with fi = 0.05 and a sample size of 500 points. 

No, OF ITERATIONS 

i;-_wEm2” 

is; 50 50 
N” OF ITERATIONS N” OF ITERATIONS 

FIG. 2. Sucessive energy estimates plotted against the number of iterations for two different 
values of B. (3) /I = 0.025; (4) fl = 0.01. These plots illustrate the correlations between successive 
estimates which are particularly pronounced in curve (4). 

the statistical uncertainty plays an important role. In the present case, however, 
this needs a little explanation. In normal Monte-Carlo work (e.g., in the estimation 
of the value of some integral) the procedure may be repeated several times to 
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obtain different estimates for the quantity desired. If a different set of sampling 
points is taken for each calculation, one would expect the distribution of Monte- 
Carlo estimates to be random, so that an estimate of the error can be given from 
the variance associated with their distribution. It is usual, for example, to calculate 
the standard error in the mean value and quote this as the error in the calculated 
value. In our calculations however, the successive estimates for the energy values 
are correlated to some extent as we illustrate in Figs. 1 and 2. In the first of these 
diagrams we have traced the values of the estimate E mc for the first 50 iterations (1) 
and from the 150-th to the 200-th iteration (2) with ,6 = 0.05 and M w 500. 
One particularly noticeable feature is the very fast convergence illustrated in 
Fig. l(1). In Fig. 2 we have given samples of two sets of 50 iterations taken with 
different values of j3 (/? = 0.025 in (3) and /3 = 0.01 in (4)) after convergence was 
reached, showing that the correlations get more pronounced as p is decreased. 
This correlation between successive estimates arises because successive sample 
points differ only by the addition of a small random number (see Eq. (2.8)), 
which on the average becomes smaller as /3 is decreased. 

From plots such as these we can tell quite easily when the iteration procedure 
has converged, and also obtain some feeling for the errors involved by drawing 
in bounds as we have done in Fig. l(2). Because of the correlations a straight- 
forward variance calculation is likely to be misleading; however, if we take a 
number of estimates, large enough so that the correlations extend over a small 
fraction of this sample, then a calculation of the variance does given an indication 
of the statistical uncertainty. We have presented this with each estimate. 

In Table II we compare the analytic values of the ground state energy with the 
Monte-Carlo estimates for a range of values of n. A noticeable feature of the 

TABLE II 

A Comparison of the Monte-Carlo Estimates” with the Exact Values 
for the Ground-State Energy for the System with n Particles 

n Y Exact value 

3 0.15 3.36804 
5 0.2 13.43968 
I 0.25 32.27179 
9 0.025 61.51828 

11 0.3 102.60284 

EV EQlC 

____ 
3.35 I!c 0.004 3.35 & 0.02 

13.40 + 0.006 13.37 + 0.04 
32.40 + 0.01 32.34 I!Z 0.09 
61.51 f 0.03 61.31 f 0.10 

102.55 + 0.04 102.31 f 0.14 

a Each estimate represents an average of 100 Monte-Carlo iterations. The iterations were 
performed with a sample of approximately 1000 points and B = 0.01. With n = 11 each set of 
100 iterations takes typically 15 min computing time on a CDC 6400 computer. 
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0 1.0 PO 30 4.0 50 6.0 7.0 

R----r 

FIG. 3. The radial distribution function for two neighbouring particles in a set of five and 
nine particles in one dimension. The function is weighted by the factor efs’. The histograms 
(represented by the points) were normalized to 100 points, distributed in the region 0 < R < 10 
in equal intervals of 0.1. The solid lines are drawn in as an approximate best fit to the histogram. 
The Monte-Carlo calculations were performed with /3 = 0.01 and approximately 1000 sample 
points. 

calculations is the small error associated with the estimates & . One should not be 
too concerned about the apparent inconsistency in the estimates Ev , which do 
not all satisfy Ev - AE, < Eexact < Ev + AE, . For a particular value of /3 this 
would not necessarily be true unless /3 is sufficiently small. We should also point 
out that the value Ev for a given /3 also depends upon the parameter y, since this 
will determine the amount of admixture of higher states (see Eq. (3.1)). In general 
the value of y must be found by trial-and-error tactics, if it is not possible to gain 
some information about the wavefunction from some other means. Since this 
example was taken to illustrate the method we did not consider this point too 
seriously and so we did not use an optimum value of y for each n. 

Finally, in Fig. 3 we illustrate the type of distribution obtained for the quantity 

R = r12 , which represents the probability for two neighbouring particles to be 
separated by a distance R. 

581/7/r-10 
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5. IMPROVED VARIANCE 

In Monte-Carlo work it is always important to use as much information about 
the functions being integrated as can be obtained. In our particular case each 
iteration involves an integral over an approximation to the wavefunction. Often 
we will have some prior knowledge about the general form of this function; 
for example, we may know its asymptotic form for large distances or its behaviour 
near the origin. Even if the form is not known beforehand, it can always be found 
using the methods of the last sections. In this section we show how this knowledge 
can be used to obtain estimates for E,, with smaller variances than those associated 
with the estimator given in Eq. (2.12). 

To see how that can be done, we first multiply the basic equation Eq. (2.5) 
by a functionf(X) and consider the resultant equation as one which we can iterate 
to find the functions X(~)(X) defined by 

Thus 

X’N’(X) = f(X) #(Nv; PI (N = 0, 1, 2 )... ). (5-l) 

X'N+yX) = j &f(X) &svcx) (47+&in exp - [ 
(X - Y)" 

4p 1 
x ,-tsV'Y'f-l(y)X(N)(Y)* 

Now 
lim xW+l)(X) = e-!%~(6)x(N)(X) 
N-00 

= const f(X) QMX; PI, 

and integrating Eq. (5.2) over all X, 

e-BE@) = 
s 1, 

dY dXf(X) e-*Bv(X) (4T&,,n exp [ - (' T,~)'] 1 

x e-*sv(y)f-l(Y)f(Y) MY; PI 

S dX f(X) h,(X B) ' 

(5.2) 

(5.3) 

(5.4) 

Thus, by generating a set of points Yi distributed according to X(~)(X) we obtain 
the following Monte-Carlo estimate: 

x e-3swY,‘f-yyi) (5.5) 
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When f(X) is actually equal to #,,(X; B) there will be a zero variance for this 
expression since the term inside the summation is a constant. Since we are trying 
to find tiO(X; /3) this does not appear to be a very useful result. However, a small 
variance would be expected if we choose forf(X) a function which is a reasonable 
approximation to &,(X; /I). Thi s is not the only restriction on f(X), however, 
for we have to be able to perform the integrations over X in Eq. (5.5). In practice 
these two restrictions require thatf(X) e-*PVCx) be of Gaussian form. (An expres- 
sion involving a sum of Gaussians would also be permissible.) So let us choose 

f(X) = exp[#V(X) - X2/or2], (5.6) 

where cy. is a range parameter which can be chosen to make f(X) approximate 
Q&(X; /3). The strong damping of x(X) for large X now has the effect of increasing 
the sample size at small distances. With this choice we can rewrite the equation 
describing the iteration procedure, Eq. (5.2), as 

X’N+l’(X) = 1 dY (4rpi~snla exp [ 
(X - Y)” 

- 4pa 1 
x a3n12 exp [ 4/3aY2 (y4 - B m] X’N’v), (5.7) 

where a = ~“/(a” + 4j3). 
To iterate this equation stochastically, we use a similar procedure to that 

outlined in Section 2. We start with an arbitrary set of points distributed according 
to x(O)(Y), construct a set of points (Y1 ,..., YMfl,} distributed according to 
exp[4j3aY2/a4 - ,8V(Y)] x(O)(Y), and then form the new points 

xi, = OYi, + L ; 
i = l,..., Ml); 01 = l,..., 3n, 

(5.8) 

where the tim are selected from a normal distribution with zero mean and variance 
~/IO. Note that we have multiplied each Yi, by u before adding the &, . The new 
points {X, ,..., X,,,,} will now be distributed according to X(~)(X) as given by 
Eq. (5.7). The process is repeated until it converges to the ground state, i.e., until 
we obtain a set of points distributed according to x0(X) =f(X) #o(X; /I). Now 
for smooth potentials we can estimate e- 6Eo(B) by integrating Eq. (5.7) (cf. Eq. (5.4)) 
to obtain 

e-/3P,G3) = s lix u3ni2 exp[4jSuX2/a.4 - /IV(X)] x0(X) 

s dX xom 
(5.9) 
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if there are M points in the sample. Alternatively, we can use the variational 
form Eq. (3.4), which now becomes 

E 
’ 
= s dX Xomf-lm ffm 

.I- dX xo(X) f-W (b(x) 
(5.10) 

6. THE THREE-BODY PROBLEM 

The calculation of the ground-state energy for a system of three particles 
interacting with realistic two-particle forces is of fundamental interest in physics. 
Undoubtedly the most popular numerical method for the solution of the problem 
involves the variational approach, viz. the minimization of an expression for 
the energy by the variation of certain parameters describing an assumed form 
for the appropriate wavefunction, or alternatively the solution of the corresponding 
Euler-Lagrange equations. The result of such a calculation is a value for an 
upper (and lower) bound to the actual energy. Although the accuracy afforded 
by this method is excellent, the calculations are often lengthy (perhaps a few 
hours) in terms of the computer time required. The approach which we have 
advanced in this work gives results with an accuracy of about 0.1 MeV for 
computing times measured in fractions of an hour. 

For a system of three particles the starting point for our calculation is the 
partial differential equation 

= - g (Xl > x2 3 x3, P>, 

where the Xi are the coordinates of the three particles (of mass mi) and rii = 
Xi - Xj . The centre-of-mass motion can easily be separated by performing 
the following transformation to the coordinates qi , defined by 

q1 = ; mlXl + mzXz + m&3 , 
(2M)‘l” 

q2 = ; (Tya (X, - X3), 
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and 

g, = ; (y!LJ (m2X2 + m3X3 - ml&), (6.2) 

where M = m, + m2 + m3 and m = m2 + m3. The Jacobian for this transforma- 
tion is easily found to be 

a(x1’x2’ x3) - ( 
fF 

1 
312 

%h 9 qz , q3> - 23mlm2m3 * 

The value of this transformation is that the relative coordinates 

r23 = 2 ($)l” q2, 

r31 = “z [(jgy2 q3 - (gy2 q2], 

and 

r21 = 2 [(jgy2 q3 + (““)‘” q2], (6.3) 

are functions of the variables q2 and q3 only. Integrating over the centre-of-mass 
coordinates (~1), we see that the ground-state wavefunction $,,(q, , q3) satisfies 
the integral equation (corresponding to Eq. (2.2)), 

e-BE&,(q2 , q,) = 1 dp, f dp, e-f~%+W 

x (4&3 exp [ 

(Q2 - P212 - (Q3 - P312 
- 

4P 1 e-+~v(r,,D~) 

x vMP2 9 P3h (6.4) 

where 

+-h , q3) = C U rii I). 
i<i 

In terms of the harmonic oscillator approximation (see Appendix), the kernel 
of this integral equation is replaced by the better approximation 

e-+B”(%%) (4iy)a exp 
[ 

h2 - P2)” - ha - P3j2 - 
4Y 1 e-+flu(p2,Da) , (6.5) 
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where 

uh2 , cl31 = 4q2 , s3> + F PanWw) - Pwl(s2” + q3% (6.6) 

and y = sinh(2wj3)/2w. In these expressions, the value of w is to be determined 
independently to reduce the approximations involved in the replacement of the 
exact Green’s function. Introducing the factor 

fh2 , q3> = eM@ 4c12 , q3) - h22 + cr32Wl 
to reduce the variance (see Section 5), the basic equation we must iterate becomes 

e-BEoxo(qz , qJ = 1 dp, 1 dp, & exp [ - (q2 - OP2)‘4i(93 - ap3)2 ] 

x exp ~YO(P~~ + ~~2) 
[ a! I - B4P2 9 P3) xdP2 9 P3), 

where u = ~“/(a” + 4~) and 

xo(q2 , q3) = e~s”(q,,q9)-(q22+q,a)/,a~0(q2 , q3). (6.8) 

The three-nucleon problem 

As an example we consider the following simplified model of the triton; three 
identical particles interacting via the central two-body (spin-independent) potential 

V(r) = -51.5 exp (- $--) MeV 

with b = 1.6 F. Such a potential has been used by Baker, Gammel, Hill, and 
Wills [15] in their numerical calculations and yields the result E, = -9.42 MeV 
for the ground state (a spherically symmetric s state). Kalos [8] used a Monte-Carlo 
iterative method which finds the strength of the potential needed to produce a 
particular ground-state energy. He found E,, = -9.47 & 0.4 MeV. Herndon and 
Tang [17], using a five-parameter variational wavefunction, obtained an upper 
and lower bound to the ground-state energy such that -9.75 f 0.04 > E,, 
> -9.99 f 0.05. This, along with the calculations of Rosati and Barbi [18] 
and Banville and Kunz [20], are the most accurate calculations made with this 
potential. 

Before we can apply the method described in the previous sections for the 
solution of Eq. (6.7), we must select an approximate solution I#(X, , X2, X3) 
to use in calculating the estimate for the energy in Eq. (5.10), and values for 
the parameters w and (Y. The approximate variational wavefunction was taken 
to be of the product form (cf. Ref. [19]) 

Wh , X2 , X3) = &2J dr33 f4r2d (6.10) 
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With this particular form the function H+ needed in the expression Eq. (5.10) 
can easily be found using the following relation for the kinetic energy operator [ 191: 

(6.11) 
= 

where cos 0, = (t& + r.& - r&)/2r,,ral , and &ycuc means the sum over all cyclic 
permutations of the indices 1, 2, 3. It is 

=-- ~5’ IIc lf(r21) ftr3d fYr23) + $ f’(r23) + f(r23) f’(r2A f’tr31) ~0s 41 m 

+ C W23) ftr2d f(r3J f(r23). (6.12) 

The function p(r) was taken to have the form 

(6.13) 

This particular approximation has been used by Herndon and Tang [17] in their 
variational calculations and the optimum values for the parameters Q , Q , and 
K were found to be Q = 0.228 F, n2 = 0.565 F, and K = 1.06. 

According to the discussion on the harmonic oscillator approximation in the 
Appendix, a value of o is given by minimizing (with respect to QJ) the expression 

where @+,(q, , q& is the ground-state harmonic oscillator wavefunction, 

Wq2 , q3) = (+)3’2 ew [ - + (922 + q3’)]. (6.15) 

In their variational calculations, Herndon and Tang [17] have already considered 
this task. Their results yield the value w = 0.16 (corresponding to the variational 
estimate E, < -6.39 MeV). 

Finally, we must select a value for (II to minimize the variance in the Monte-Carlo 
estimates. The basic requirement is that the function + be chosen to mimic the 



152 GRIMM AND STORER 

19' 

10 - 

17 - 

'16- 

15- 

14- 

13- 

12. 

11 - 

9- 

0 

R-- 7-a&-,- 

9.69 z 0.1 Me'/1 

--*--4 v--x- 

I 

5 10 15 20 25 

62 LT104) 

FIG. 4. The variation in the estimate for the binding energy of the ground state of the triton 
as a function of p”. A least mean squares fit to the values of I& with ,3 < 0.025 gives an extra- 
polated result (for /3 = 0) of E. = -9.69 5 0.1 MeV. 
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ground-state wavefunction. From a practical point of view, the collection of 
statistics from only a few iterations of the Monte-Carlo process (over a range 
of values of a) will quickly suggest a suitable value. In the cases we have tried, 
we have found that the results were not very sensitive to variations in the value of 01, 
provided LX is chosen greater than the range of the ground-state wavefunction. 
For very small values of /3, the expression (6.8) for $ is of Gaussian form and 
hence 01 is related to the value of w through 01 = 421~. 

The Monte-Carlo calculations were performed in the same way as has already 
been described in Section 4. An initial distribution for the solution xO(qZ , qJ 
can easily be generated using a Gaussian of the form Eq. (6.15) for the function 
$,,(qZ , qJ. Then, for small /3, xO(qZ, q3) has the form of a normal distribution 

2 with mean zero and variance (w + ~/LX )- lj2. An initial set of 100 points with this 
distribution is then iterated until a sufficiently large sample is obtained. Iterations 
are repeated until convergence appears for this value of j?. The value of j3 is then 
reduced and we continue in this fashion until no significant improvement is 
obtained with a further reduction in /3. At this stage it is necessary to increase 
the sample size for the reasons already stated in Section 4. An example of the 
sort of results obtained is given inTableIl1. These results have been plotted against 
/12 in Fig. 4 to illustrate the trend as /3 is decreased. From the extrapolation of these 
calculations for Emc , this method suggests the value E,, = --9.69 & 0.10 MeV 
for the ground-state energy value. Although this result is an improvement over 

TABLE III 

Monte-Carlo Estimates” for the Ground-State Energy Value of the Triton 

Energy estimates (MeV)b 

0.05 600 -9.44 * 0.01 -18.64 2~ 0.16 
0.04 600 -9.50 5 0.01 -15.33 & 0.13 
0.025 600 -9.63 + 0.02 -11.85 & 0.09 
0.02 600 -9.63 f 0.02 -11.12 4 0.09 
0.01 600 -9.70 * 0.02 -10.04 i 0.09 
0.005 600 -9.61 i- 0.02 -9.55 4~ 0.08 
0.005 1900 -9.70 * 0.02 -9.77 i 0.06 

a Each calculation represents the mean of 300 iterations, each performed with approximately M 
sample points. For each calculation we have also presented the standard error in the mean value. 
A noticeable feature is the great improvement provided by the variation calculation (I&) over 
the Monte-Carlo average (J&J for large values of B. With M * 600, each 100 iterations takes 
approximately 5 min on the CDC 6400 computer. 

b For comparison, the variational result is -9.78 MeV [17, 201. 
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the results of Kales [8], and in good agreement with the variational calculations 
[18, 19,201, it is rather apparent that an extremely large sample is required to 
obtain really accurate results. To illustrate this breakdown in the method we have 
included some results using only 600 sample points for /3 = 0.005 in Table III. 
As we can see from the table there is an improvement as the sample size is increased 
to 1900 points; however, as each iteration with this number of points takes approxi- 
mately 10 sets on the CDC 6400 computer, and it is necessary to iterate several 
hundred times to obtain good statistics, we did not feel that any further decrease 
in /3 would be justified. The two particle distribution function (weighted by the 
factors erSu(a,.s,)-(q,*+s,2)/~~) can be calculated by compiling a histogram of the 
values of the quantity r12 during the course of the computation. A typical example 
is drawn in Fig. 5 for /3 = 0.005. 

FIG. 5. The (normalized) two-particle distribution function (weighted by the factor 
etS”(crz,qs)-(‘lz8+“sS)ka for the ground state of the triton. The Monte-Carlo calculations were per- 
formed with /3 = 0.005 and approximately 1900 sample points. The rapid approach to zero for 
large distances is a consequence of the Gaussian weighting factor, which was introduced in an 
attempt to reduce the variance in the energy value estimates. 

DISCUSSION 

We have discussed a possible method for the numerical solution of the many- 
body Schriidinger equation and described the computational procedures required 
for a solution by Monte-Carlo methods. For well-behaved potentials this procedure 
is very simple and we can find quite reasonable first estimates to the energy and 
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wavefunction of the ground state without a great deal of computation. These 
results require no knowledge of the form of the wavefunction; however, increased 
accuracy has been obtained by an importance sampling technique using prior 
knowledge of the wavefunction obtained by variational methods. Such experiments 
are likely to be of considerable value, for example, where one does not require 
a very great accuracy in the results or, on the other hand, needs a good first 
approximation to commence (say) a variational calculation. 

APPENDIX. THE HARMONIC OSCILLATOR APPROXIMATION 

The basic approximation Eq. (2.2) is valid for many different divisions of H 
into Ho and V, and there will be certain divisions for which the errors made are 
smaller than those where Ho is defined as in Section 2. One useful division results 
from defining Ho = --P/ax2 + 02x2, so that V(x) is replaced by U(x) = 
V(x) - 02x2 and o is a parameter which can be chosen so that the variation in 
U(x) is small. Now from Ref. [l], 

Cx I e+fo I x’> = [ zT sin~(2ws) ]3’2 

x exp 
I 
- $! coth(2w@(x2 + x’~) + w cosech(2w/3) x * ~‘1, 

and the kernel Eq. (2.4) can be easily shown to reduce to one of the form in 
Eq. (6.5). Moreover if the variation in U(x) is small we would expect the harmonic 
oscillator wavefunction (for that particular value of o) to be a good approximation 
to the wavefunction of the corresponding Schrodinger equation; Eq. (6.14) follows 
immediately. A more complete discussion of these ideas, together with some 
results illustrating their value, will be presented in the near future. 
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